DStream::reactiveStatelessEngine
语法
DStream::reactiveStatelessEngine(metrics)
详情
创建流计算响应式无状态引擎。参考:createReactiveStatelessEngine。
返回值:一个 DStream 对象。
参数
metrics 字典向量,其中的每一个元素都是一个字典,代表数据间的一个依赖关系,每个字典的结构如下:
- “outputName”->productName:metricName
- “formula“-><A*B>
- “A“->productName:metricName
- “B“->productName:metricName
例子
if (!existsCatalog("orca")) {
createCatalog("orca")
}
go
use catalog orca
// 如已存在流图,则先销毁该流图
// dropStreamGraph('engine')
g = createStreamGraph('engine')
metrics = array(ANY, 0, 0)
metric1 = dict(STRING,ANY)
// 依赖关系 product_B:value=product_A:factor1+product_A:factor2+product_B:factor1
metric1["outputName"] = `product_B:`value
metric1["formula"] = <A+B+C>
metric1["A"] = `product_A:`factor1
metric1["B"] = `product_A:`factor2
metric1["C"] = `product_B:`factor1
metrics.append!(metric1)
// 依赖关系 product_C:value=product_B:value*product_C:factor1
metric2 = dict(STRING, ANY)
metric2["outputName"] =`product_C:`value
metric2["formula"] = <A*B>
metric2["A"] = `product_B:`value
metric2["B"] = `product_C:`factor1
metrics.append!(metric2)
g.source("input", 1000:0, `product`factor`value, [STRING, STRING, DOUBLE])
.reactiveStatelessEngine(metrics)
.sink("output")
g.submit()
go
products = take("product_A", 2)
factors = ["factor1", "factor2"]
values = [1.0, 2.0]
tmp = table(products as product, factors as factor, values as value)
appendOrcaStreamTable("input", tmp)
products = take("product_B", 1)
factors = take("factor1", 1)
values = take(1.0, 1)
tmp = table(products as product, factors as factor, values as value)
appendOrcaStreamTable("input", tmp)
select * from orca_table.output
productName | metricName | metricsResults |
---|---|---|
product_B | value | |
product_C | value | |
product_B | value | 4 |
product_C | value |